# Asian Resonance

# Study on Physico-chemical Parameters of Holy Pond Water in Soron Town (District Kasganj), North India



Ruchi Agarwal Assistant Professor, Deptt. of Chemistry, Bareilly College, Bareilly,(U.P.), India

# Rajeev Kumar Singh

Assistant Professor Deptt. of Chemistry, Shri Ram Murti Samarak College of Engineering and Technology, Bareilly,(U.P.), India

## Gajendra Pal Singh

Assistant Professor, Deptt. of Chemistry, Bareilly College, Bareilly,(U.P.), India

# Abstract

Eleven physical and chemical parameters like pH, TDS, total alkalinity, total hardness, chloride, fluoride, sulphate, nitrate, calcium, magnesium and iron were analysed in water samples drawn from 4 cornered and marked sites during monsoon (M), post-monsoon (PSM), winter (W) and pre-monsoon (PRM) season during 2017-18. Cornered and marked of holy pond is situated in Soron region. The present study revealed that pH, total hardness (TH), total alkalinity (TA), chloride, sulphate and nitrate were found to be within the prescribed standard norms. Fluoride concentration in samples from site P1 and P3 were found to be slightly higher than the desired limit but still under permissible limit laid down by BIS. Even Iron concentration were determined to be higher then permissible limit in all the samples from all the four sites. The higher concentration of TDS, iron, calcium and magnesium may be due to disposal & subsequent deposition of suspended particulate matter from activities of the pilgrims regarding holy procedures involving the pond water. These latter concentrations were maximumally found in the Badriva site  $P_1$  situated in the west direction of the holypond.

Keywords: Physico-Chemical Parameters, Water Quality, Pond. Introduction

The quality of water is of vital concern for the mankind since it is directlylinked with human welfare and as well as for the irrigation of crops. With therapid advancement in civilization and industrialization, the water is becomingday by day polluted and is rendered unsuitable for drinking and irrigation. Thisproblem is assuming alarming proportions and looms large on the horizons of developing countries. The major sources of water pollution are domestic wastes from urban and rural areas, and industrial wastes which are discharged into natural water bodies.

#### **Review of Literature**

Water, a most important and basic resources life saver for living beings (Chaurasia and Agrawal, 2002, Ravichandran, C., *et al.* 2002).

The analysis of water both in term of quality and quantity either in rivers, ponds or gram water (Moharir, A. *et al.* 2002) is essential for the very existence of mankind (Razak *et al.*, 2009; Visa and Jimoh, 2010; Rao *et al.*, 2012; Jena *et al.*, 2013). Uses of water for drinking, bathing, fisheries, irrigation and other domestic purposes is prominent these days even. Lack of hygiene awareness among mankind, uses of inefficient methods and technology have led to a large volume of water wastage in all domestic, agriculture and industrial areas (Rathod *et al.* 2011; Mehta, 2011; Nkansah and Ephrain, 2009; Bhuvana and Ramesh 2012). Water pollution is rendering the available water unsafe for consumption. In India even today most of the population depends on surface water. Uttar Pradesh state is enriched with a lot of ponds and rivers. Major portion of the population of this state dependent on pond water for their daily water needs. Rain water is collected in the ponds through runoff from surface and gets polluted by various personal and industrial activities (Manivaskam, N. 1996).

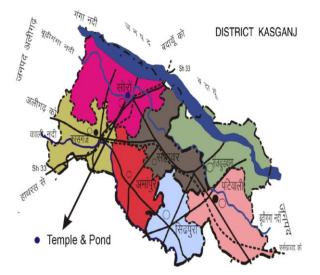
In the present study four directional sampling sites, namely P1 (Badriya), P2 (Chandan Chowk), P3 (Chakra Teerath) and P4 (Kasganj Gate) in Soron region, (Kasganj) were selected around the periphhery of the experimental pond with an area of (1500mx500m). Location of sampling sites with respect to geographical direction of the pond is given in table 1.

|               | Iable          |                        |
|---------------|----------------|------------------------|
| Sampling Site | Location Name  | Direction Geographical |
| P1            | Badariya       | W                      |
| P2            | Chandan Chowk  | E                      |
| P3            | Chakra Teerath | Ν                      |
| p4            | Kasganj Gate   | S                      |
|               |                |                        |

## E: ISSN No. 2349-9443

#### Aim of the Study

The holy pond in Soron town bears an extreme religious significance. Lakh of pilgrims from peripheral areas visit this pond to perform all religious activities with full zeal, leading to pond water pollution and the subsequent health relative problems that may creep in and above all the lack of initiatives taken by the district board to keep water clean and maintain the health and hygiene. So with this standpoint the present study was undertaken to maintain pond water quality across the pond boundaries annually.


# Materials and Methods

#### Study Area

Soron is a birthplace of great Indian poet TULSIDAS and is a well known pilgrimage spot, also known as SHUKAR KSHETRA. It is located at coordinates 27.88<sup>o</sup>N 78.75<sup>o</sup>E at an average elevation of 179m (587 feet) above sea level. Soron Shukar Kshetra is a city and a municipal board in Kasganj district in state Uttar Pradesh (North India). Huge no. of pilgrims gather here on Hindu auspicious occasions, like Deepawali, Sharad-Poornima, Makar Sankranti and Ramanavami with tremendous worship, celebrations and taking a bath in holy pond.

#### Sample Collection

Surface water samples from four directional cornered and marked sites of selected pond were collected in pre-cleaned polythene bottles. The water samples were collected 4 times in a year in different season's viz. monsoon (M) (June-Aug), post monsoon (PSM) (Sep-Nov), winter (W) (Dec-Feb) and premonsoon (PRM) season (March-May) from all the marked sites of the pond. They were preserved, marked and analysed according to standard methods (APHA, 1992) in table-3. The pH was measured using pH meter (SYSTRONIC 335) while total dissolved solids and turbidity were measured by conductivity meter (systronics-model 304) and turbidity meter (ELICO CL-52) respectively. Chloride and fluoride were measured argentometrically and by ion selective method respectively whereas sulphate, and nitrate were determined spectrophotometrically, while total hardness, total alkalinity, calcium and magnesium were measured titrimetricaly. Analysis for iron in water



# Asian Resonance

was done by atomic absorption spectrophotometer (Perkin Elmer 130).

#### **Result and Discussion**

The observation of analysed parameters in the collected water samples from each site are given in table 2. pH has no direct adverse effect on health, however, large pH values enhances the scaling in water heating appliances and even reduces germicidal potential of chloride. Higher pH also initiates the formation of haloalkanes which are toxic (Jena et al., 2013). The pH values of selected water samples of present study ranged from 7.12 to 7.82 which are within the prescribed norms of standards but slightly alkaline in nature. Except TDS, total hardness, alkalinity, chloride, sulphate, nitrate, and fluoride were found well within the permissible prescribed norms of BIS. Calcium and Magnesium concentration in the site P1, P2 and P4 found slightly higher than desired limit but under permissible limit of BIS. A positive correlation of pH with fluoride indicates that high alkaline nature of water formats leaching of fluoride and thus effect the concentration of fluoride in water (Salve et al., 2007). The iron concentration ranged from 0.52 to 1.26 mg/L which is higher than desired limit in all of the sampling stations.

As per Sullivan, R.J. (1969) the presence of iron in atmosphere may be attributed to emission from the iron and power industry, thermal power plant and incineration. On the same grounds, the higher concentration of TDS, iron, calcium and magnesium may be due to dissolution and deposition of source activities performed by pilgrims on account of bathing and discarding worship material as well as idol matter in pond water. Even studies by Dey and Dutta (2018) for pond water in Durg, India was carried out due to excessive fecal contamination and human/animal unhygienic habits regarded usage of water and rendering it unfit for further uses in cooking and drinking purpose and leading an indication to protect the affected and concerned living beings. The iron concentration found in the Badariya site P1 of the pond which is situated in the west direction was greater than other locations due to frequent and large number of such activities being performed in the preferred entry gate at Badariya. With such increased concentrations, both precipitation and dissolution is found, which results in decreasing pond clarity and encouraging iron as well as other ion parameters alongwith bacteria which affect fish and water both. Higher level of iron provides yellowish green colour to the pond water and even causes staining when the water is used for holy purpose. Even rippling effect of water due to bathing and other activities may carry out migration of mineral matter across other pond boundaries, resulting in pond water pollution in the sacred pond, which could be harmful for the concerned pilgrim, further more, the studies performed by Sajitha and Vijayamma (2016) scouted for water quality index of pond water in Athiyannor, where the quality qualified well for its essential human uses and messaging out authorities to protect such small water bodies and human beings.

### E: ISSN No. 2349-9443

#### Conclusion

It might be therefore suggestible that some regulated norms should be laid down for such activities like discarding worship materials. It should be taken care of that, pilgrims must abide by such norms in order to minimize the pollution of this religious and pious pond, and besides this maintaining its historical significance for the masses. Furthermore a periodic water quality monitoring is essential to save guard the concerned humans.

# Äcknowledgement

The authors are thankful to Dr. Anuraag Mohan, Head, Department of Chemistry, Bareilly College Bareilly for providing necessary monitoring equipments and valuable support and guidance for smooth running of present work.

#### References

- APHA. 1998. Standard method for examination of water and wastewater. American Public Health Association, Washington, D.C.
- APHA, AWWA and WPCF. 1989. Standard method for examination of water and wastewater (17th edn). American Public Health Association, New York.
- Bhuvana, J.P. and K. Ramesh. 2012. Water quality index for assessment of water quality in south Chennai coastal aquifer, Tamil Nadu. Int. J. Chem. Tech. Res., 4(4) : 1582-1588.
- BIS.1992. Indian standard for drinking water specification-10500. Bureau of Indian Standards, New Delhi.
- Charausia, S. and G.D. Agrawal. 2002. Biomonitoring of river Mandakini through Benthic macro invertebrates. Indian J. Env. Prot., 22(9) : 1007-1013.
- Dey and Dutta (2018). Comparative physicochemical analysis of pond water in BhilaiDurgChattisgarh, India. Int. Jr. of Adv. in Sc. Eng. and Tech. Vol. 6 Issue 4 : 82-83.
- Jena Vinod, Satis Dixit and Sapna Gupta. 2013. Assessment of water quality index of industrial area surface water sample. Int. J. Chem. Tech Res., 5(1): 278-283.
- Manivaskam, N. 1996. Physico-chemical examination of water sewage and industrial effluents.

# Pragati Prakashan, Meerut.

Mehta K.V. 2011. Physico-chemical and statistical evaluation of groundwater of some places of Deesa taluka in Banaskantha district of Gujarat State. Int. J. Chem. Tech. Res., 3 (3) : 1129-1134.

Asian Resonance

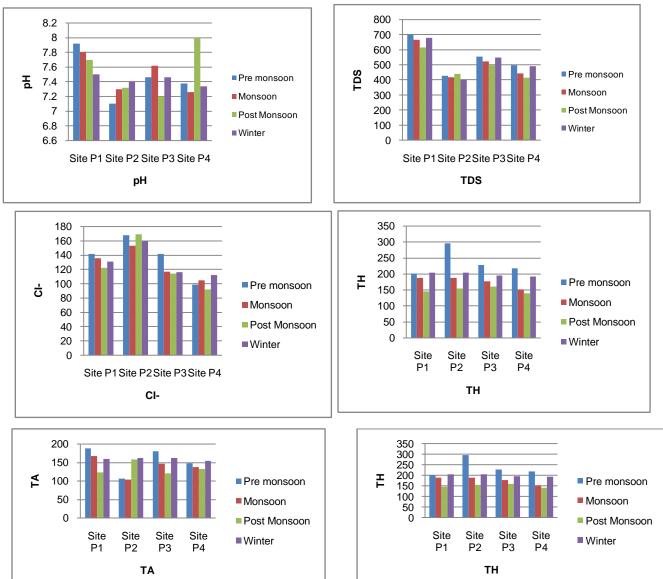
- Moharir, A., et al. 2002. Surface and ground water quality assessment in Bina region. Indian J. Env. Prot., 22(9): 961-971.
- Nkansah, M. A. and J.H. Ephrain. 2009. Physicochemical evaluation of the water from bore holes selected from E J and Bak districts of the Ashanti region of Ghana, Thammasat. Int. J. Sci. Tech., 14(3): 64-73.
- Rao, V.S., et al. 2012. Physico-chemical analysis of water samples of Nujendla area in Guntur district, Andhra Pradesh. Int. J. Chem. Tech. Res., 4 (2) : 691-699.
- Rathod, S.D., M. Mohsin and Farooquim. 2011. Water quality index in and around Waluj Shendra industrial area, Aurangabad. (M.S.). Asian J. Biochem. Pharmaceut. Res., 1(2): 368-372.
- Ravichandran, C., et al. 2002. Drinking water quality assessment in few selected pilgrim centres and tourist spots in Tamil Nadu. Indian. J. Env. Prot., 22 (2) : 129-136.
- Razak, Abdul, et al. 2009. Assessment of the water quality of the Oti river in Ghana. West Afr. J. Appl. Ecol., 15 : 45-60.
- Salve, P.R., et al. 2008. Fluoride and other inorganic constituents in ground water. Indian J. Env. Prot., 28(1): 45-48.
- Sullivan, R.J. (1969). Air pollution aspects of iron and its compounds. US department of health education and welfare. Nat.Tech. Inf. Service Publ. No. 188088.
- Sajitha, V. and Vijayamma, S.A. (2016). Study of physico-chemical parameters and pond water quality assessment by using water quality index at Athiyannoor Panchayath, Kerala, India, Emer Life Sc. Res. 2(1): 46-51.
- Visa, J. and T. Jimoh. 2010. Analytical studies on water quality index of river Landzu. Am. J. Appl. Sci., 7 (4): 453-458.

|                 | Site P1 |         |         |        |         |        |         |         | Site P  | 2      |         |        |
|-----------------|---------|---------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|
| Para            | Pre     | Monsoon | Post    | Winter | Average | sd     | Pre     | Monsoon | Post    | Winter | Average | sd     |
| meters          | monsoon |         | Monsoon |        |         |        | monsoon |         | Monsoon |        |         |        |
| pН              | 7.92    | 7.80    | 7.70    | 7.50   | 7.73    | 0.177  | 7.10    | 7.30    | 7.32    | 7.40   | 7.28    | 0.127  |
| TDS             | 702     | 666     | 614     | 678    | 665     | 37.148 | 428     | 418     | 440     | 400    | 421.5   | 16.921 |
| Cl              | 142     | 136     | 122     | 131    | 132.7   | 8.460  | 168     | 153     | 169     | 160    | 162.5   | 7.505  |
| SO4             | 81      | 63      | 64      | 64     | 68      | 8.679  | 76      | 82      | 42      | 64     | 66      | 17.663 |
| TA              | 188     | 167     | 124     | 160    | 159.7   | 26.638 | 106     | 104     | 158     | 162    | 132.5   | 31.806 |
| TH              | 201     | 188     | 145     | 204    | 184.5   | 27.333 | 296     | 188     | 154     | 204    | 210.5   | 60.693 |
| NO <sub>3</sub> | 13      | 10      | 6.4     | 11     | 10.1    | 2.764  | 14      | 12      | 6.5     | 10     | 10.62   | 3.198  |
| Mg              | 22      | 33      | 22      | 31     | 27      | 5.830  | 26      | 30      | 21      | 32     | 27.25   | 4.856  |
| Ca              | 22      | 58      | 48      | 63     | 47.7    | 18.264 | 42      | 39      | 44      | 37     | 40.5    | 3.109  |
| Fe              | 1.01    | 0.99    | 1.26    | 1.05   | 1.08    | 0.213  | 0.84    | 0.80    | 1.04    | 0.60   | 0.82    | 0.180  |
| F               | 1.27    | 1.01    | 0.96    | 1.11   | 1.08    | 0.136  | 0.98    | 0.94    | 0.54    | 0.74   | 0.80    | 0.202  |

Table 2. Analysis Result of Physico-Chemical Parameter of Selected Pond with Four Chosen Location

|            | Site P3 |         |         |        |         |        |         |         | Site P  | 4      |         |        |
|------------|---------|---------|---------|--------|---------|--------|---------|---------|---------|--------|---------|--------|
| Parameters | Pre     | Monsoon | Post    | Winter | Average | sd     | Pre     | Monsoon | Post    | Winter | Average | sd     |
|            | monsoon |         | Monsoon |        |         |        | monsoon |         | Monsoon |        |         |        |
| pH         | 7.46    | 7.62    | 7.20    | 7.46   | 5.6     | 0.173  | 7.38    | 7.26    | 7.99    | 7.34   | 7.492   | 0.335  |
| TDS        | 556     | 522     | 498     | 548    | 531.0   | 26.356 | 498     | 442     | 414     | 492    | 461.5   | 40.410 |

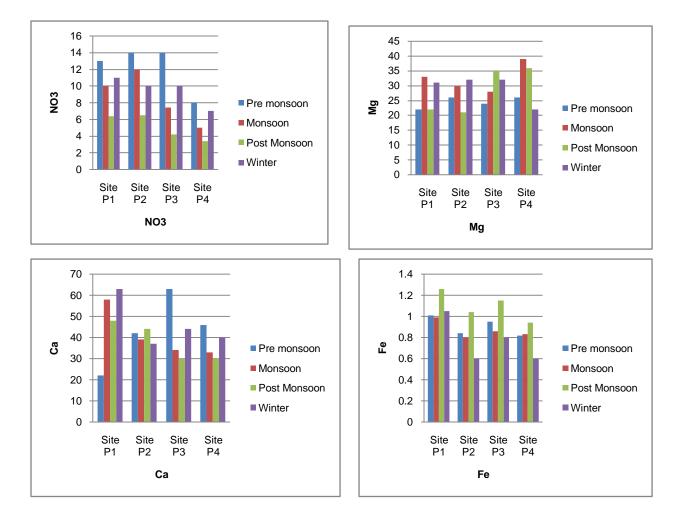
Asian Resonance

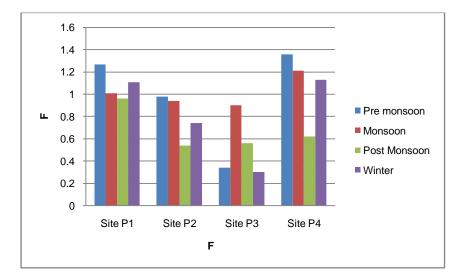

# E: ISSN No. 2349-9443

| CI              | 142  | 117  | 114  | 116  | 122.2 | 13.225 | 99   | 105  | 92   | 112  | 102.0 | 8.524  |
|-----------------|------|------|------|------|-------|--------|------|------|------|------|-------|--------|
| SO4             | 14   | 96   | 22   | 86   | 54.5  | 42.469 | 92   | 75   | 44   | 84   | 73.7  | 21.013 |
| TA              | 180  | 147  | 121  | 162  | 152.5 | 24.959 | 148  | 138  | 132  | 154  | 143.0 | 9.865  |
| TH              | 228  | 178  | 160  | 196  | 190.5 | 29.000 | 218  | 152  | 140  | 193  | 175.7 | 36.179 |
| NO <sub>3</sub> | 14   | 7.4  | 4.2  | 10   | 8.9   | 4.145  | 8    | 5    | 3.4  | 7    | 5.8   | 2.055  |
| Mg              | 24   | 28   | 35   | 32   | 29.7  | 4.787  | 26   | 39   | 36   | 22   | 30.7  | 8.057  |
| Ca              | 63   | 34   | 30   | 44   | 42.7  | 14.728 | 46   | 33   | 30   | 40   | 37.2  | 7.182  |
| Fe              | 0.95 | 0.86 | 1.15 | 0.80 | 0.9   | 0.152  | 0.82 | 0.83 | 0.94 | 0.60 | 0.79  | 0.142  |
| F               | 0.34 | 0.90 | 0.56 | 0.30 | 0.5   | 0.274  | 1.36 | 1.21 | 0.62 | 1.13 | 1.08  | 0.321  |

Table 3 : Parameters and Methods Employed in The Physicochemical Examination of Water Samples

| S.No. | Parameters              | Unit  | Method Employed                     |
|-------|-------------------------|-------|-------------------------------------|
| 1.    | рН                      | -     | Digital pH meter                    |
| 2.    | Total alkalinity        | mg/L  | Titrimetric method (with H2SO4)     |
| 3.    | Total Hardness          | mg/L  | Titrimetric method (with EDTA)      |
| 4.    | Calcium Hardness        | mg/L  | Titrimetric method                  |
| 5.    | Magnesium Hardness      | mg/L  | Titrimetric method                  |
| 6.    | Chloride                | mg/L  | Titrimetric method (with AgNO3)     |
| 7.    | Nitrate, Sulphate       | mg/L  | Spectrophotometric method           |
| 8.    | Fluoride                | mg/L  | Ion Selective Electrode method      |
| 9.    | Total Dissolved Solids  | mg/L  | Digital TDS-meter                   |
| 10.   | Electrical Conductivity | µS/cm | Digital conductivity meter          |
| 11.   | Iron                    | ppm   | Atomic absorption spectrophotometer |


\*Except pH all parameters are measured in mgL-1.




RNI No.UPENG/2012/42622

Asian Resonance

## E: ISSN No. 2349-9443





37